可验收CEMS烟气连续排放监测系统

沈阳2024-06-25 05:58:13
2 次浏览小百姓0911191244665
联系人:郭堃*********** 随着工业化的快速发展,烟气排放问题日益严重,对环境和人类健康造成了严重威胁。为了有效监控和管理烟气排放,工业烟气在线监测系统应运而生。本文将探讨工业烟气在线监测系统的技术要求和标准,以确保其准确、稳定、可靠地运行。 一、系统组成与设备要求 工业烟气在线监测系统主要由采样设备、分析仪器、数据采集和处理设备、数据传输设备以及控制系统等组成。各组成部分需满足以下技术要求: 采样设备:采样设备应能够有效地采集烟气样品,确保样品的真实性和代表性。同时,采样设备应具有良好的密封性能,防止烟气泄漏。 分析仪器:分析仪器应具有高灵敏度和高准确度,能够准确地测量烟气中的污染物浓度。此外,分析仪器应具备良好的稳定性和可靠性,能够在各种环境条件下正常工作。 数据采集和处理设备:数据采集和处理设备应能够实时、准确地收集和处理分析结果。同时,设备应具备良好的人机交互界面,方便操作人员进行操作。 数据传输设备:数据传输设备应能够将处理后的数据快速、准确地发送到远程监控中心。设备应具备良好的抗干扰能力,确保数据的准确性和完整性。 控制系统:控制系统应能够有效地控制整个系统的运行,包括采样设备的启停、分析仪器的工作状态、数据采集和处理设备的运行状态等。 cems烟气超低在线监测系统系统由免维护型取样探头,带温度显示的温度控制箱及分析柜组成。分析柜的仪表面板上装有嵌入式一体化触摸屏显示操作系统、分析仪器、流量计、监视过滤器、电源开关等。柜内由取样预处理及控制部分组成。结构紧凑,便于安装,气路短,流量大,反应快速,系统无冷凝现象。而且精致,美观。嵌入式一体化触摸屏显示操作系统内置系统流程图动画效果图,控制按钮,状态指示灯,能够很好的实现人机的对话及对系统的控制。安装指导书和使用维修手册,以及生产厂家,电话。通过动画系统目前的气体流程工作的原理能够一目了然,对初次接触的人学习很有帮助,有助学习者很快的掌握系统的工作原理。 《污染源在线自动监控(监测)系统数据传输标准》HJ212-2017 《固定污染源排气中颗粒物测定与气态污染物采样方法》GB/T16157 采用紫外差分技术测量SO2、NO不受水蒸气等其它干扰气体影响; 测量结果不受光源能量波动、衰减影响; 测量原理保证了仪器零点基本无漂移; 采用德国原装进口冷凝器,经过独特的加磷酸技术,避免了SO2的损失; 采用PLC控制,自动化程度高、维护工作量小; 系统模块化结构设计,配置灵活; 系统抗干扰性能强; 系统操作简单维护方便; 系统测量精度高; 系统数据采集精度高; 监测下限低,适用于超低排放气态污染物在线监测。 烟气超低在线监测系统CEMS 火电厂烟气在线监测技术现状 1.非分散红外/紫外吸收法SO2和NOX监测技术 “十一五”和“十二五”期间,国内在脱硫和脱硝上应用 为广泛的是非分散红外吸收法监测技术,有少部分紫外吸收技术。这类技术是基于朗伯-比尔(Lambert-Beer)吸收定律的光谱吸收技术,其基本分析原理是:当光通过待测气体时,气体分子会吸收特定波长的光,可通过测定光被介质吸收的辐射强度计算出气体浓度。 2.紫外荧光法SO2监测技术 紫外荧光法基于分子发光技术,在一定条件下,SO2气体分子吸收波长为190~230nm,紫外线能量成为激发态分子,激发态的SO2分子不稳定,瞬间返回基态,发射出波长为330nm的特征荧光。在浓度较低时,特征荧光的强度与SO2浓度成线性关系,即可通过检测荧光强度计算SO2浓度。 3.化学发光法NOX监测技术 化学发光法是在一定条件下,NO与过量的O3发生反应,产生激发态的NO2。激发态NO2返回基态时,会产生波长为900nm的近红外荧光。在浓度较低情况下,NO与O3充分反映发出的光强度与NO浓度成线性关系,即可通过检测化学发光强度计算NO浓度。 几种烟气在线监测技术的性能比较 国内火电厂烟气在线监测产品众多,本文结合各种产品的运行情况,参考了拥有该种技术典型品牌产品的说明书,对超低排放较为关注的量程、精度等重要指标参数进行对比。其中 小量程指的是 小物理量程,而非软件迁移的量程。 1.SO2和NOX监测技术的比较 根据《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测系统技术要求及检测方法》(HJ/T76),按超低排放限值计算,SO2和NOX量程应不大于175mg/m3和250mg/m3。非分散紫外吸收/差分法分析仪的 小量程满足HI/T76标准要求,但CEMS系统的整体性能不但与分析仪本身性能有关,还受烟气预处理系统性能的影响。 2.烟尘监测技术的比较 在火电厂超低排放改造中,烟尘浓度一般要达到10mg/m3以下。尤其以湿式除尘改造为主要技术路线的烟气中水分含量较大,给烟尘的准确监测带来挑战。β射线法技术量程低,可达到低浓度烟尘监测的精度要求,但其成套价格较高,且β射线装置属于放射源,国家辐射管理部门对其销售、运输、使用过程、报废等都有严格的监管,不便于应用推广,所以其在CEMS上应用也较少。在实际应用中一般是将烟气等速抽取,经升温加热使水分雾化不出现液滴,再通过光散射等低浓度测量方法进行测量;另一种是将烟气等速抽取,将加热干燥的空气与其按一定比例混合稀释,从而降低烟气中的水分含量,再通过光散射等低浓度测量方法进行测量,结合混合气体的稀释比计算出烟尘浓度。这种方式采用低浓度测量原理,优化了烟气采样和预处理,有效解决目前超低排放改造中高湿低浓度烟尘在线监测的问题,在湿式除尘后已有广泛应用。 3.烟气预处理技术的比较 火电厂实施超低排放改造后,烟气污染物浓度大幅降低,在线监测的适应性取决于系统的检出下限,而CEMS的检出下限受分析仪本体和烟气预处理装置两部分制约。在实际应用的烟气预处理中,直接抽取+冷干法占70%,均采用冷凝除水技术。该技术在冷凝过程中,冷凝水会吸收携带部分SO2和NOX,以致在超低浓度工况下的监测数据严重失真甚至无检测数据,不能满足HI/T76标准的技术要求。水分含量越高对测量结果影响越大,其中渗透膜除水技术对SO2测量的影响远小于其他除水技术,其除水效果优于其他技术。由此而知,在直抽法采用紫外吸收/差分法分析仪时,应同时选用除水效果更好的烟气预处理技术,否则监测数据可能严重失真甚至检测不出数据。在稀释法取样中,预处理侧重于对稀释气体的处理,通常配备专门的压缩空气净化装置或者发生装置,经精密过滤和干燥,可将露点降至-40℃,不需要加热采样管线。在CEMS中,稀释抽取法通常与紫外荧光和化学发光技术配套使用。 五、结束语: 综上所述,超低排放改造实施后,进出口烟气特性差异较大,烟气监测对CEMS的系统配置提出了更高、更具体的要求,建议在可研或技术规范书里明确各测点不同污染物对烟气取样方式、预处理、分析仪的测量原理、量程、检出下限等主要参数和选型的具体要求。 高温红外烟气排放连续监测系统,全程高温热湿抽取式采样,采用德国Födisch先进的GFC/IFC光度测定技术与简单可靠的高温样品预处理系统相结合。该系统可同时测量烟气中的SO₂、NO、NO₂、CO、HCL、HF、NH₃等污染气体浓度和CO₂、CH₄、N₂O等温室气体。全程高温采样,尤其适用于低浓度、高湿度、腐蚀性强、气体成分复杂的垃圾焚烧行业及特殊过程气体检测
联系电话:15129653023
可验收CEMS烟气连续排放监测系统 - 图片 1
可验收CEMS烟气连续排放监测系统 - 图片 2
可验收CEMS烟气连续排放监测系统 - 图片 3
可验收CEMS烟气连续排放监测系统 - 图片 4
可验收CEMS烟气连续排放监测系统 - 图片 5
可验收CEMS烟气连续排放监测系统 - 图片 6